放射性惰性气体同位素测年
-
Enhancement of the 81Kr and 85Kr count rates by optical pumping
Z. Y. Zhang et al., Phys. Rev. A 101, 053429 (2020). [DOI]
-
An electromagnetic separation system for the enrichment of 39Ar
Z. H. Jia et al., Rev. Sci. Instrum. 91, 033309 (2020). [DOI]
-
Identifying recharge processes into a vast 'fossil' aquifer based on dynamic groundwater 81Kr age evolution
R. Ram et al., Journal of Hydrology 587, 124946 (2020). [DOI]
-
Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating
T. Matsumoto et al., Earth Planet. Sci. Lett. 535, 116120 (2020).
[DOI]
-
Dual Separation of Krypton and Argon from Environmental Samples for Radioisotope Dating
X.-Z. Dong et al., Anal. Chem. 91, 21, 13576-13581 (2019). [DOI]
-
Radiokrypton unveils dual moisture sources of a deep desert aquifer
R. Yokochi et al., Proc. Natl. Acad. Sci. 116, 16222 (2019). [DOI]
-
81Kr dating of the Guliya ice cap, Tibetan Plateau
L. Tian et al., Geophys. Res. Lett. 46, 6636 (2019). [DOI]
-
Latest development of radiokrypton dating – A tool to find and study paleogroundwater
W. Jiang et al., Quaternary International, in press (2019). [DOI]
-
Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes 81Kr and 39Ar
Y. Yechieli et al., Earth and Planet. Sci. Lett. 507, 21 (2019). [DOI]
-
Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale
Christoph Gerber et al., Geochim. Cosmochim. Acta 205, 187-210 (2017). [DOI]
-
Radiokrypton dating coming of age
Z.-T. Lu, Nat. Sci. Rev 3(2), 172 (2016). [DOI]
-
Continental degassing of 4He by surficial discharge of deep groundwater
P.K. Aggarwal et al., Nature Geo. 8, 35 (2015).
[DOI]
-
Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica
C. Buizert et al., Proc. Nat. Acad. Sci. 111, 6876 (2014).
[DOI]
( See accompanying Commentary : Aeschbach-Hertig, W. ibid )
-
Tracer Applications of Noble Gas Radionuclides in the Geosciences
Z.-T. Lu et al., Earth Sci. Rev. 138, 196 (2014).
[DOI]
-
Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples
G.-M. Yang et al., Sci. Rep. 3, 1596 (2013).
[DOI]
-
An Atom Counter for Measuring 81Kr and 85Kr in Environmental Samples
W. Jiang et al., Geochim. Cosmochim. Acta 91, 1-6 (2012).
[DOI]
-
Ar-39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis
W. Jiang. et al., Phys. Rev. Lett. 106, 103001 (2011).
[DOI]
( See accompanying Physics Synopsis )
-
Ultrasensitive isotope trace analyses with a magneto-optical trap
C.Y. Chen et al., Science 286, 1139 (1999).
[DOI]
大气分子的激光光谱与检测
-
Rovibrational line lists for nine isotopologues of the CO molecule in the X1Sigma+ ground electronic state
G. Li et al., Astrophys. J. Supp. 216, 15 (2015).
[DOI]
-
Ultra-sensitive, self-calibrated cavity ring-down spectroscopy for quantitative trace-gas analysis
B. Chen et al., App. Opt. 53(32), 7716-7723 (2014).
[DOI]
-
Line parameters of the 782 nm band of CO2
Y. Lu et al., Astrophys. J. 775(1), 71 (2013).
[DOI]
-
The 4vCH overtone of 12C2H2, sub-MHz precision spectrum reveals perturbations
A.-W. Liu et al., J. Chem. Phys. 138, 014312 (2013).
[DOI]
-
The v=3<-0 S(0)-S(3) electric quadrupole transitions of H2 near 0.8 um
S.-M. Hu et al., Astrophys. J. 749(1), 76 (2012).
[DOI]
-
Electric-quadrupole transition of H2 determined to 10-9 precision
C.-F. Cheng et al., Phys. Rev. A 85(2), 024501 (2012).
[DOI]
玻尔兹曼常数的光学测定
-
Doppler broadening thermometry based on cavity ring-down spectroscopy
C.-F. Cheng et al., Metrologia 52, S385-S393 (2015).
[DOI]
-
Application of cavity ring-down spectroscopy to the Boltzmann constant determination
Y. R. Sun et al., Opt. Exp. 19(21), 19993–20002 (2011).
[DOI]
氢分子精密光谱
-
Measurement of the Hyperfine Quenching Rate of the Clock Transition in 171Yb
C.-Y. Xu et al., Phys. Rev. Lett. 113, 033003 (2014).
[DOI]
-
Phonon coupling of water monomers in a solid nitrogen matrix
L. Wu et al., J. Chem. Phys. 138, 114304 (2013).
[DOI]
-
Electronic spectroscopy ytterbium in a neon matrix
R. Lambo et al., J. Chem. Phys. 137, 204315 (2012).
[DOI]
-
Optical Excitation and Decay Dynamics of Ytterbium Atoms Embedded in a Solid Neon Matrix
C.-Y. Xu et al., Phys. Rev. Lett. 107, 093001 (2011).
氦原子精密光谱测量
-
Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He
X. Zheng, Y. R. Sun*, J.-J. Chen, W. Jiang, K. Pachucki, S.-M. Hu*
Physical Review Letters, 118, 063001, (2017).
[DOI]
-
Laser spectroscopy measurement of the fine structure splitting 23P1-23P2 of 4He
G.-P. Feng et al., Phys. Rev. A 91, 030502(R) (2015).
[DOI]
-
Laser probing of halo nuclei in light atoms
Z.-T. Lu et al., Rev. Mod. Phys. 85, 1383 (2013).
[DOI]
-
Precision spectroscopy of the helium atom
S.-M. Hu et al., Front. Phys. China 4, 165 (2009).
[DOI]
-
Nuclear charge radius of 8He
P. Mueller et al. Phys. Rev. Lett. 99, 252501 (2007).
[DOI]
-
Laser spectroscopic determination of the 6He nuclear charge radius
L.-B. Wang et al. Phys. Rev. Lett. 93, 142501 (2004).
[DOI]
时间反演对称性的实验检测
-
Improved limit on the 225Ra electric dipole moment
Michael Bishof et al., Phys. Rev. C 94, 025501 (2016).
[DOI]
-
First measurement of the atomic electric dipole moment of 225Ra
R. H. Parker et al., Phys. Rev. Lett. 114, 233002 (2015).
[DOI]
(see accompanying Physics Synopsis)
-
Laser-trapping of Ra-225 and Ra-226 with repumping by room temperature blackbody radiation
J. R. Guest et al., Phys. Rev. Lett. 98, 093001 (2007).
[DOI]