Radiokrypton dating

  • Enhancement of the 81Kr and 85Kr count rates by optical pumping

    Z. Y. Zhang et al., Phys. Rev. A 101, 053429 (2020). [DOI]
  • An electromagnetic separation system for the enrichment of 39Ar

    Z. H. Jia et al., Rev. Sci. Instrum. 91, 033309 (2020). [DOI]
  • Identifying recharge processes into a vast 'fossil' aquifer based on dynamic groundwater 81Kr age evolution

    R. Ram et al., Journal of Hydrology 587, 124946 (2020). [DOI]
  • Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating

    T. Matsumoto et al., Earth Planet. Sci. Lett. 535, 116120 (2020). [DOI]
  • Dual Separation of Krypton and Argon from Environmental Samples for Radioisotope Dating

    X.-Z. Dong et al., Anal. Chem. 91, 21, 13576-13581 (2019). [DOI]
  • Radiokrypton unveils dual moisture sources of a deep desert aquifer

    R. Yokochi et al., Proc. Natl. Acad. Sci. 116, 16222 (2019). [DOI]
  • 81Kr dating of the Guliya ice cap, Tibetan Plateau

    L. Tian et al., Geophys. Res. Lett. 46, 6636 (2019). [DOI]
  • Latest development of radiokrypton dating – A tool to find and study paleogroundwater

    W. Jiang et al., Quaternary International, in press (2019). [DOI]
  • Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes 81Kr and 39Ar

    Y. Yechieli et al., Earth and Planet. Sci. Lett. 507, 21 (2019). [DOI]
  • Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale

    Christoph Gerber et al., Geochim. Cosmochim. Acta 205, 187-210 (2017). [DOI]
  • Radiokrypton dating coming of age

    Z.-T. Lu,Nat. Sci. Rev 3(2), 172 (2016). [DOI]
  • Continental degassing of 4He by surficial discharge of deep groundwater

    P.K. Aggarwal et al., Nature Geo. 8, 35 (2015). [DOI]
  • Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica

    C. Buizert et al., Proc. Nat. Acad. Sci. 111, 6876 (2014). [DOI]
    ( See accompanying Commentary : Aeschbach-Hertig, W. ibid )
  • Tracer Applications of Noble Gas Radionuclides in the Geosciences

    Z.-T. Lu et al., Earth Sci. Rev. 138, 196 (2014). [DOI]
  • Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples

    G.-M. Yang et al., Sci. Rep. 3, 1596 (2013). [DOI]
  • An Atom Counter for Measuring 81Kr and 85Kr in Environmental Samples

    W. Jiang et al., Geochim. Cosmochim. Acta 91, 1-6 (2012). [DOI]
  • Ar-39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    W. Jiang. et al., Phys. Rev. Lett. 106, 103001 (2011). [DOI]
    ( See accompanying Physics Synopsis )
  • Ultrasensitive isotope trace analyses with a magneto-optical trap

    C.Y. Chen et al., Science 286, 1139 (1999). [DOI]

Atmospheric molecules

  • Rovibrational line lists for nine isotopologues of the CO molecule in the X1Sigma+ ground electronic state

    G. Li et al., Astrophys. J. Supp. 216, 15 (2015). [DOI]
  • Ultra-sensitive, self-calibrated cavity ring-down spectroscopy for quantitative trace-gas analysis

    B. Chen et al., App. Opt. 53(32), 7716-7723 (2014). [DOI]
  • Line parameters of the 782 nm band of CO2

    Y. Lu et al., Astrophys. J. 775(1), 71 (2013). [DOI]
  • The 4vCH overtone of 12C2H2, sub-MHz precision spectrum reveals perturbations

    A.-W. Liu et al., J. Chem. Phys. 138, 014312 (2013). [DOI]
  • The v=3<-0 S(0)-S(3) electric quadrupole transitions of H2 near 0.8 um

    S.-M. Hu et al., Astrophys. J. 749(1), 76 (2012). [DOI]
  • Electric-quadrupole transition of H2 determined to 10-9 precision

    C.-F. Cheng et al., Phys. Rev. A 85(2), 024501 (2012). [DOI]

Boltzmann constant

  • Doppler broadening thermometry based on cavity ring-down spectroscopy

    C.-F. Cheng et al., Metrologia 52, S385-S393 (2015). [DOI]
  • Application of cavity ring-down spectroscopy to the Boltzmann constant determination

    Y. R. Sun et al., Opt. Exp. 19(21), 19993–20002 (2011). [DOI]

Matrix-embedded atoms

  • Measurement of the Hyperfine Quenching Rate of the Clock Transition in 171Yb

    C.-Y. Xu et al., Phys. Rev. Lett. 113, 033003 (2014). [DOI]
  • Phonon coupling of water monomers in a solid nitrogen matrix

    L. Wu et al., J. Chem. Phys. 138, 114304 (2013). [DOI]
  • Electronic spectroscopy ytterbium in a neon matrix

    R. Lambo et al., J. Chem. Phys. 137, 204315 (2012). [DOI]
  • Optical Excitation and Decay Dynamics of Ytterbium Atoms Embedded in a Solid Neon Matrix

    C.-Y. Xu et al., Phys. Rev. Lett. 107, 093001 (2011).

The helium atom

  • Measurement of the Frequency of the 23S-23P Transition of 4He

    X. Zheng (郑昕), Y. R. Sun (孙羽), J.-J. Chen (陈娇娇), W. Jiang (蒋蔚), K. Pachucki, and S.-M. Hu (胡水明)

    Physical Review Letters, 119, 263002, (2017). [DOI]
  • Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He

    X. Zheng, Y. R. Sun*, J.-J. Chen, W. Jiang, K. Pachucki, S.-M. Hu*
    Physical Review Letters, 118, 063001, (2017). [DOI]
  • Laser spectroscopy measurement of the fine structure splitting 23P1-23P2 of 4He

    G.-P. Feng et al., Phys. Rev. A 91, 030502(R) (2015). [DOI]
  • Laser probing of halo nuclei in light atoms

    Z.-T. Lu et al., Rev. Mod. Phys. 85, 1383 (2013). [DOI]
  • Precision spectroscopy of the helium atom

    S.-M. Hu et al., Front. Phys. China 4, 165 (2009). [DOI]
  • Nuclear charge radius of 8He

    P. Mueller et al. Phys. Rev. Lett. 99, 252501 (2007). [DOI]
  • Laser spectroscopic determination of the 6He nuclear charge radius

    L.-B. Wang et al. Phys. Rev. Lett. 93, 142501 (2004). [DOI]

EDM of radium-225

  • Improved limit on the 225Ra electric dipole moment

    Michael Bishof et al., Phys. Rev. C 94, 025501 (2016). [DOI]
  • First measurement of the atomic electric dipole moment of 225Ra

    R. H. Parker et al., Phys. Rev. Lett. 114, 233002 (2015). [DOI]
    (see accompanying Physics Synopsis)
  • Laser-trapping of Ra-225 and Ra-226 with repumping by room temperature blackbody radiation

    J. R. Guest et al., Phys. Rev. Lett. 98, 093001 (2007). [DOI]