Publication
Radiokrypton dating
-
Enhancement of the 81Kr and 85Kr count rates by optical pumping
Z. Y. Zhang et al., Phys. Rev. A 101, 053429 (2020). [DOI] -
An electromagnetic separation system for the enrichment of 39Ar
Z. H. Jia et al., Rev. Sci. Instrum. 91, 033309 (2020). [DOI] -
Identifying recharge processes into a vast 'fossil' aquifer based on dynamic groundwater 81Kr age evolution
R. Ram et al., Journal of Hydrology 587, 124946 (2020). [DOI] -
Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating
T. Matsumoto et al., Earth Planet. Sci. Lett. 535, 116120 (2020). [DOI] -
Dual Separation of Krypton and Argon from Environmental Samples for Radioisotope Dating
X.-Z. Dong et al., Anal. Chem. 91, 21, 13576-13581 (2019). [DOI] -
Radiokrypton unveils dual moisture sources of a deep desert aquifer
R. Yokochi et al., Proc. Natl. Acad. Sci. 116, 16222 (2019). [DOI] -
81Kr dating of the Guliya ice cap, Tibetan Plateau
L. Tian et al., Geophys. Res. Lett. 46, 6636 (2019). [DOI] -
Latest development of radiokrypton dating – A tool to find and study paleogroundwater
W. Jiang et al., Quaternary International, in press (2019). [DOI] -
Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes 81Kr and 39Ar
Y. Yechieli et al., Earth and Planet. Sci. Lett. 507, 21 (2019). [DOI] -
Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale
Christoph Gerber et al., Geochim. Cosmochim. Acta 205, 187-210 (2017). [DOI] -
Radiokrypton dating coming of age
Z.-T. Lu,Nat. Sci. Rev 3(2), 172 (2016). [DOI] -
Continental degassing of 4He by surficial discharge of deep groundwater
P.K. Aggarwal et al., Nature Geo. 8, 35 (2015). [DOI] -
Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica
C. Buizert et al., Proc. Nat. Acad. Sci. 111, 6876 (2014). [DOI]
( See accompanying Commentary : Aeschbach-Hertig, W. ibid ) -
Tracer Applications of Noble Gas Radionuclides in the Geosciences
Z.-T. Lu et al., Earth Sci. Rev. 138, 196 (2014). [DOI] -
Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples
G.-M. Yang et al., Sci. Rep. 3, 1596 (2013). [DOI] -
An Atom Counter for Measuring 81Kr and 85Kr in Environmental Samples
W. Jiang et al., Geochim. Cosmochim. Acta 91, 1-6 (2012). [DOI] -
Ar-39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis
W. Jiang. et al., Phys. Rev. Lett. 106, 103001 (2011). [DOI]
( See accompanying Physics Synopsis ) -
Ultrasensitive isotope trace analyses with a magneto-optical trap
C.Y. Chen et al., Science 286, 1139 (1999). [DOI]
Atmospheric molecules
-
Rovibrational line lists for nine isotopologues of the CO molecule in the X1Sigma+ ground electronic state
G. Li et al., Astrophys. J. Supp. 216, 15 (2015). [DOI] -
Ultra-sensitive, self-calibrated cavity ring-down spectroscopy for quantitative trace-gas analysis
B. Chen et al., App. Opt. 53(32), 7716-7723 (2014). [DOI] -
Line parameters of the 782 nm band of CO2
Y. Lu et al., Astrophys. J. 775(1), 71 (2013). [DOI] -
The 4vCH overtone of 12C2H2, sub-MHz precision spectrum reveals perturbations
A.-W. Liu et al., J. Chem. Phys. 138, 014312 (2013). [DOI] -
The v=3<-0 S(0)-S(3) electric quadrupole transitions of H2 near 0.8 um
S.-M. Hu et al., Astrophys. J. 749(1), 76 (2012). [DOI] -
Electric-quadrupole transition of H2 determined to 10-9 precision
C.-F. Cheng et al., Phys. Rev. A 85(2), 024501 (2012). [DOI]
Boltzmann constant
-
Doppler broadening thermometry based on cavity ring-down spectroscopy
C.-F. Cheng et al., Metrologia 52, S385-S393 (2015). [DOI] -
Application of cavity ring-down spectroscopy to the Boltzmann constant determination
Y. R. Sun et al., Opt. Exp. 19(21), 19993–20002 (2011). [DOI]
Matrix-embedded atoms
-
Measurement of the Hyperfine Quenching Rate of the Clock Transition in 171Yb
C.-Y. Xu et al., Phys. Rev. Lett. 113, 033003 (2014). [DOI] -
Phonon coupling of water monomers in a solid nitrogen matrix
L. Wu et al., J. Chem. Phys. 138, 114304 (2013). [DOI] -
Electronic spectroscopy ytterbium in a neon matrix
R. Lambo et al., J. Chem. Phys. 137, 204315 (2012). [DOI] -
Optical Excitation and Decay Dynamics of Ytterbium Atoms Embedded in a Solid Neon Matrix
C.-Y. Xu et al., Phys. Rev. Lett. 107, 093001 (2011).
The helium atom
-
Measurement of the Frequency of the 23S-23P Transition of 4He
X. Zheng (郑昕), Y. R. Sun (孙羽), J.-J. Chen (陈娇娇), W. Jiang (蒋蔚), K. Pachucki, and S.-M. Hu (胡水明)
Physical Review Letters, 119, 263002, (2017). [DOI] -
Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He
X. Zheng, Y. R. Sun*, J.-J. Chen, W. Jiang, K. Pachucki, S.-M. Hu*
Physical Review Letters, 118, 063001, (2017). [DOI] -
Laser spectroscopy measurement of the fine structure splitting 23P1-23P2 of 4He
G.-P. Feng et al., Phys. Rev. A 91, 030502(R) (2015). [DOI] -
Laser probing of halo nuclei in light atoms
Z.-T. Lu et al., Rev. Mod. Phys. 85, 1383 (2013). [DOI] -
Precision spectroscopy of the helium atom
S.-M. Hu et al., Front. Phys. China 4, 165 (2009). [DOI] -
Nuclear charge radius of 8He
P. Mueller et al. Phys. Rev. Lett. 99, 252501 (2007). [DOI] -
Laser spectroscopic determination of the 6He nuclear charge radius
L.-B. Wang et al. Phys. Rev. Lett. 93, 142501 (2004). [DOI]
EDM of radium-225
-
Improved limit on the 225Ra electric dipole moment
Michael Bishof et al., Phys. Rev. C 94, 025501 (2016). [DOI] -
First measurement of the atomic electric dipole moment of 225Ra
R. H. Parker et al., Phys. Rev. Lett. 114, 233002 (2015). [DOI]
(see accompanying Physics Synopsis) -
Laser-trapping of Ra-225 and Ra-226 with repumping by room temperature blackbody radiation
J. R. Guest et al., Phys. Rev. Lett. 98, 093001 (2007). [DOI]